Space group determination: Difference between revisions

Jump to navigation Jump to search
→‎Screw axes: make more explicit
(→‎Screw axes: make more explicit)
Line 142: Line 142:
# a two-fold screw axis along an axis in reciprocal space (theoretically) results in zero intensity for the odd-numbered (e.g. 0,K,0 with K = 2*n + 1) reflections, leaving the reflections of type 2*n as candidates for medium to strong reflections (they don't ''have'' to be strong, but they ''may'' be strong!).
# a two-fold screw axis along an axis in reciprocal space (theoretically) results in zero intensity for the odd-numbered (e.g. 0,K,0 with K = 2*n + 1) reflections, leaving the reflections of type 2*n as candidates for medium to strong reflections (they don't ''have'' to be strong, but they ''may'' be strong!).
# similarly, a three-fold screw axis (theoretically) results in zero intensity for the reflections of type 3*n+1 and 3*n+2, and allows possibly strong 3*n reflections . 3<sub>1</sub> and 3<sub>2</sub> cannot be distinguished - they are enantiomorphs.  
# similarly, a three-fold screw axis (theoretically) results in zero intensity for the reflections of type 3*n+1 and 3*n+2, and allows possibly strong 3*n reflections . 3<sub>1</sub> and 3<sub>2</sub> cannot be distinguished - they are enantiomorphs.  
# analogously for four-fold and six-fold axes.
# analogously for four-fold screw axes: for H=0, K=0 reflections, 4<sub>1</sub> and 4<sub>3</sub> screws yield the rule L=4*n, and 4<sub>2</sub> yields the rule L=2*n .
# analogously for six-fold screw axes: for H=0, K=0 reflections, 6<sub>1</sub> and 6<sub>5</sub> screws yield the rule L=6*n, 6<sub>2</sub> and 6<sub>4</sub> yield the rule L=3*n, and 6<sub>3</sub> yields the rule L=2*n .
Once screw axes have been deduced from the patterns of intensities along H,0,0  0,K,0  0,0,L , the resulting space group should be identified in the lists of space group numbers printed in IDXREF.LP and CORRECT.LP, and the CORRECT step can be re-run. Those reflections that should theoretically have zero intensity are then marked with a "*" in the table. In practice, they should be (hopefully quite) weak, or even negative.
Once screw axes have been deduced from the patterns of intensities along H,0,0  0,K,0  0,0,L , the resulting space group should be identified in the lists of space group numbers printed in IDXREF.LP and CORRECT.LP, and the CORRECT step can be re-run. Those reflections that should theoretically have zero intensity are then marked with a "*" in the table. In practice, they should be (hopefully quite) weak, or even negative.


2,652

edits

Cookies help us deliver our services. By using our services, you agree to our use of cookies.

Navigation menu