Changes

From CCP4 wiki
Jump to navigationJump to search
16 bytes added ,  12:06, 15 February 2008
Enclosed the equations in dashed boxes to make things clearer - let me know if this doesn't work well!
Line 4: Line 4:  
=== Data quality indicators ===
 
=== Data quality indicators ===
 
In the following, all sums over hkl extend only over unique reflections with more than one observation!
 
In the following, all sums over hkl extend only over unique reflections with more than one observation!
* R<sub>sym</sub> and R<sub>merge</sub> : the formula for both is
+
* R<sub>sym</sub> and R<sub>merge</sub> - the formula for both is:
<math>
+
<math>
R = \frac{\sum_{hkl} \sum_{j} \vert I_{hkl,j}-\langle I_{hkl}\rangle\vert}{\sum_{hkl} \sum_{j}I_{hkl,j}}
+
R = \frac{\sum_{hkl} \sum_{j} \vert I_{hkl,j}-\langle I_{hkl}\rangle\vert}{\sum_{hkl} \sum_{j}I_{hkl,j}}
</math>
+
</math>
 
<br>
 
<br>
 
where <math>\langle I_{hkl}\rangle</math> is the average of symmetry- (or Friedel-) related observations of a unique reflection.
 
where <math>\langle I_{hkl}\rangle</math> is the average of symmetry- (or Friedel-) related observations of a unique reflection.
Line 13: Line 13:  
It can be shown that this formula results in higher R-factors when the redundancy is higher. In other words, low-redundancy datasets appear better than high-redundancy ones, which obviously violates the intention of having an indicator of data quality!
 
It can be shown that this formula results in higher R-factors when the redundancy is higher. In other words, low-redundancy datasets appear better than high-redundancy ones, which obviously violates the intention of having an indicator of data quality!
 
* Redundancy-independant version of the above:  
 
* Redundancy-independant version of the above:  
<math>
+
<math>
R_{meas} = \frac{\sum_{hkl} \sqrt \frac{n}{n-1} \sum_{j=1}^{n} \vert I_{hkl,j}-\langle I_{hkl}\rangle\vert}{\sum_{hkl} \sum_{j}I_{hkl,j}}
+
R_{meas} = \frac{\sum_{hkl} \sqrt \frac{n}{n-1} \sum_{j=1}^{n} \vert I_{hkl,j}-\langle I_{hkl}\rangle\vert}{\sum_{hkl} \sum_{j}I_{hkl,j}}
</math>
+
</math>
 
<br>
 
<br>
 
which unfortunately results in higher (but more realistic) numerical values than R<sub>sym</sub> / R<sub>merge</sub>  
 
which unfortunately results in higher (but more realistic) numerical values than R<sub>sym</sub> / R<sub>merge</sub>  
Line 21: Line 21:     
for intensities use  
 
for intensities use  
<math>
+
<math>
R_{p.i.m.} (or R_{mrgd-I}) = \frac{\sum_{hkl} \sqrt \frac{1}{n} \sum_{j=1}^{n} \vert I_{hkl,j}-\langle I_{hkl}\rangle\vert}{\sum_{hkl} \sum_{j}I_{hkl,j}}
+
R_{p.i.m.} (or R_{mrgd-I}) = \frac{\sum_{hkl} \sqrt \frac{1}{n} \sum_{j=1}^{n} \vert I_{hkl,j}-\langle I_{hkl}\rangle\vert}{\sum_{hkl} \sum_{j}I_{hkl,j}}
</math>
+
</math>
 
<br>
 
<br>
 
<br>
 
<br>
    
and similarly for amplitudes:  
 
and similarly for amplitudes:  
<math>
+
<math>
R_{mrgd-F} = \frac{\sum_{hkl} \sqrt \frac{1}{n} \sum_{j=1}^{n} \vert F_{hkl,j}-\langle F_{hkl}\rangle\vert}{\sum_{hkl} \sum_{j}F_{hkl,j}}
+
R_{mrgd-F} = \frac{\sum_{hkl} \sqrt \frac{1}{n} \sum_{j=1}^{n} \vert F_{hkl,j}-\langle F_{hkl}\rangle\vert}{\sum_{hkl} \sum_{j}F_{hkl,j}}
</math>
+
</math>
 
<br>
 
<br>
 
with <math>\langle F_{hkl}\rangle</math> defined analogously as <math>\langle I_{hkl}\rangle</math>.
 
with <math>\langle F_{hkl}\rangle</math> defined analogously as <math>\langle I_{hkl}\rangle</math>.
Line 36: Line 36:  
=== Model quality indicators ===
 
=== Model quality indicators ===
 
* R and R<sub>free</sub> : the formula for both is  
 
* R and R<sub>free</sub> : the formula for both is  
<math>
+
<math>
R=\frac{\sum_{hkl}\vert F_{hkl}^{obs}-F_{hkl}^{calc}\vert}{\sum_{hkl} F_{hkl}^{obs}}
+
R=\frac{\sum_{hkl}\vert F_{hkl}^{obs}-F_{hkl}^{calc}\vert}{\sum_{hkl} F_{hkl}^{obs}}
</math>
+
</math>
 
<br>
 
<br>
 
<br>
 
<br>
21

edits

Cookies help us deliver our services. By using our services, you agree to our use of cookies.

Navigation menu